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HEATING OF A MICROPOLAR LIQUID DUE TO VISCOUS ENERGY DISSIPATION 

IN CHANNELS. i. POISEUILLE FLOW 

N. P. Migun and P. P. Prokhorenko UDC 536.24:532.032 

An analytical study is made of the effect of the internal microstructure of a 
liquid on its heating due to viscous energy dissipation. 

In its different forms, the theory of micropolar liquids (MPL) [i] is currently used 
for theoretically describing transfer processes in liquids with an internal microstructure: 
liquid crystals, magnetic liquids, certain suspensions, and associated liquids. However, a 
comparatively large number of transfer coefficients (material constants) which until recent- 
ly had no method of being determined are included in this theory. The studies [2, 3] pro- 
posed methods of determining differentparameters characterizing the internal microstructure 
of a liquid, For example, the method of determining the material constants of a liquid in 
[3] is based on measurement of heating of the liquid as a result of viscous energy dissipa- 
tion during Poiseuille flow in a plane channel in the case of constant channel-wall tempera- 
ture. 

The present work analytically solves a problem of the heating of an MPL flowing as a 
result of a fixed pressure gradient in the plane Channel. We set thermal boundary condi- 
tions more general than those in [3] and take into account the change in temperature through 
the thickness of the channel walls. A numerical analysis is made of the dependence of the 
temperature field in the liquid on quantities characterizing its micropolarity. The magni- 
tude of the dissipative heating of a liquid flowing in microcapillaries (h ~ 10 -5 m) is very 
small in the overwhelming majority of cases. However, we also have the goal of studying 
dissipative heating of the liquid under conditions where its value is sufficiently large for 
experimental determination (for example, with a pressure drop Ap = 20-40 atm). 

In the second article we will solve a similar problem for Couette flow with a pre- 
scribed constant relative velocity of the channel walls. The role of microrotations of par- 
ticles of the medium in the case of significant dissipative heating of the microstructural 
liquid is established for a broad range of practical instances, such as when two surfaces 
with an intervening liquid are moving at a comparatively high velocity relative to each 
other. 

Let us examine the stabilized flow of an incompressible micropolar liquid under the in- 
fluence of a constant pressure gradient dp/dx between parallel plates located a distance 2h 
from one another. The x axis of the Cartesian coordinate system coincides with the central 
line of the channel, while the y axis is perpendicular to the plates. In this case, the 
velocity vector ~ and the microrotation vector ~ only have nontrivial components vx(Y) and 
~z(Y), respectively. We will assume that the physical properties of the MPL are constant, 
i.e., we will ignore the effect of dissipative heating on them, as well as the body forces 
and their moments. Given these assumptions, the equations describing the flow of the MPL 
have the form 
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. dZv~ d %  dp 
(~ + ~)-~- + ,~ = o, (i) 

gV ~ d 9 dx 

dZv z dv x 
? • -- 2XVz= O- (2) 

dfi  dy 

We use boundary conditions in the form 

~Ig= V, Vlg= ~- (rot ~[g+ fi(l-- =). (3) 

Since the linear ~ and angular ~ velocities of the boundary, as well as all of the com- 
ponents of the vectors ~ and ~ except for Vx(Y) and Vz(y) are equal to zero, boundary condi- 
tions (3) can be written as 

(__+_ h) = o, ( ) . 
---2--\ dy : v = •  (4) 

Having solved system of differential equations (i), 
we obtain expressions for vx(y ) and Vz(y): 

(2) with boundary conditions (4), 

v = _Tj 28a chk --chk , 
Vo 2 + 6o~ ksh k 

shk  
Vo 2 + 6o~ shk ' 

�9 2 • " ( ) h ; y = y / h ; ~ = l - - o ~ .  where Vo = ( - -dp ldx )  h 2 ~ n = ~ +  ~__~_;8o= p n , k = ~ h  = 2 ~ + •  • 1/2 
21.tn ' ~ + • ? 

(5) 

(6) 

It is apparent from (5) and (6) that the velocity and microrotation profiles depend on 
6o, ~, k, and h. Figure 1 shows curves of Vx/Vo and ~zh/vo constructed from Eqs. (5) and (6) 
with Constant 6o.and k for different ~ and h. The change in h corresponds to different k 
with a constant k. It follows from the figures and numerical analysis of Eqs. (5) and (6) 
that the liquid exhibits micropolarity to a greater extent with a decrease in h and an in- 
crease in ~. The microrotation ~ can coincide with the curl ~ on the boundary (with ~ = 0) 
only in the absence of moment stresses between liquid particles, i.e., when the liquid is 
Newtonian. In fact, as can be seen from (5) and (6), as ~ + 0 the linear velocity Vx coin- 
cides with the+velocity of a Newtonian liquid with a shear viscosity B n = B + </2, while the 
microrotation v z coincides with the curl w. 

It can be seen from Fig. la that, in the flow of a microstructural liquid in a channel 
of sufficiently small cross section -- for example, one for which k < 5 -- the velocity profile 
may differ significantly from a Newtonian profile calculated for the same dp/dx and ~n. This 
is because the energy spent on moving the liquid through the channel and characterizable by 
the quantity dp/dx is spent on overcoming friction due not only to linear shear, but also to 
the presence of moment stresses between particles. Thus, the particles of a microstructural 
liquid with the coefficients K, B, and y have a lower linear velocity than microelements of 
a volume of Newtonian liquid located at the same points of the cross section, the Newtonian 
liquid here having a shear viscosity ~n and flowing in the same channel under the influence 
only of a pressure gradient. 

It follows from the foregoing that the viscous energy dissipation function of an MPL 
should be determined not only by the linear-velocity gradient but also by the microrotation 
characteristics. The expression for the viscous energy dissipation function of an incom- 
pressible MPL has the form [4] 

@mp= thz (v~,~ - -  e~z~v~) + mhzvz,k, (7 )  

where the stress tensor tkl and micromoments tensor mk~ are determined as follows: 

tkz = ~ (vk,z + vz,~) + • (vz ,k--  e~iv~), mkl = ~vk,z + ~vz,~. 

Here, the comma before an index denotesthe operation of differentiation with respect to the 
corresponding tensor component. 

145 



@ 

0 

2 ,  
- ~  ! t , .  , 

J -'/0o O 

a 

@ o#o0 

i 
o! 

3 ~, x 

Z 
-q5 o o,s ~ i o  

b 

Fig. I. Velocity Vx/Vo (a) and microrotation 9zh/vo (b) with different 
values of 8o, k, and ~:a) k = i, 8o = 2 and ~ = i (i), 0.7 (3), 0.5 (4), 
0.i (7); 8o = 2, ~ = 0.9, and k = 1 (2), 3 (5), 7 (6); curve 8 corresponds 
to a Newtonian liquid (80 + 0). b) 8o = 2, ~ = 0.9, and k = i (I), 3 (2), 
i0 (3); k = i, 8o = 2, and $ = 0.i (4), 0.3 (5), 0.5 (6). 

Given the above flow conditions, Eq. (7) takes the form 

~P(y) = (~ + x) t--~-_~ / - 2,< + (8) 

Having replaced v x and Vz, after some simple transformations we obtain an expression for the 
viscous energy dissipation function of an MPL which characterizes the distribution of heat 
sources in the liquid volume: 

%~176 0  +0o_  +o~ (9) 
h 2 t (2 + 8o~) shk L k 2 2 + 8o~ shk 2 / ~  (2 + 80) ]/ 

Let one of the channel walls be of thickness H, and the other of thickness H2. We as- 
sign a constant temperature Tc for the outside surfaces of both walls. We will state the 
problem of the heating of the liquid and the channel walls due to viscous energy dissipation 
in the region of stabilized heat exchange as follows: 

~'q d2T~ = -- (1)(ym) P, I (i0) 
@2 

i 
L.t ~zT1 = 0, 

~'t dZT3 = O. 
ey~ j 

dT~ I = I t  dTt I ~q dT, I =~tdT3 , 
lu= dy l u = -  h 

T~ (h ~- / /1)  = To, Ta (-- h -- H,) == To, 

T~(h) = T2(h), T ~ ( h )  = T ~ ( - - h ) .  
(n) 

Here, the indices i, 2, and 3 with T correspond to the temperature in different regions: in 
the plate of thickness H,, in the liquid, and in the plate of thickness Hi, respectively. 

Integrating system (i0) and using boundary conditions (ii), we obtain an expression for 
the temperature distribution in an MPL flowing in the channel: 

T,(y)=W(yshky --chkg __W ch2ky) + L - -  ~ _ _  + l - - ~ z  I--~ C~ + Ca, (12) 
k 16L 2 12 

where 
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W = 

C~ = 7]4 

k z (2+ ~o~) sh k '  k 2 (2 + ~o) ' 

/2 - -  l~ _ _  ; C2 = M - -  Q - -  (C1 + M )  

l,~+I1 + 2~t 
%q 

M = k W ( c h k - - - -  

ch k 
Q = 117 (sh k ch 2k) ; l~ - 

k 16L 

r 2 - -  T O 

4v02~a )~q; 

~t + ; 

W 1 
sh2k) -- L - - - - ;  

8L 3 

W H I n ~  ; l~ -- 

h h 
Let us examine the special case H~ = H2 = H, when l~ = 12 = I and Eq. (12) becomes 

T~ (y') = W(W c h 2 k - - c h 2 k y  
16L k 

Numerical analysis of (13) shows that when ~ = i, i.e., 
boundary conditions, the temperature in the channel with any 
when it is calculated within the framework of the model of a 

1 -- y~ lk~... 

12 3~ t 
~ Here, a decrease in h is accompanied by an increase in T2n/T2, and at the limit (k = 
kh § 0) 

~, (.~)~ 2 ~ (if). 
2 +  8o 

chk--chky +~shky__shk)+ L l--~z l--y~ Ml~q _ _ + _ _  .(13) 
2 12 ~t  

i n  the  ea se  of  " f u l l  a d h e s i o n "  
60 and k i s  a lways  l e s s  than 
Newtonian  l i q u i d :  

(14) 

Obviously, for Poiseuille flows thereshould exist a range of physically permissible 
values of the boundary-conditions parameter ~ (or ~) with assigned values of microstructural 
parameters 60 and k and dimension h. Thus, in cases of pronounced micropolarity (large 6o 
or small k and h), the amount of microrotation in the volume is substantially less than ~. 
This pertains also to microrotation of the liquid particles at the boundary, although the 
value here is a different percentage of the curl than in the volume of the liquid. As a re- 
sult, ~ may not be close to unity in such cases. 

Numerical analysis of (13) confirms, and Figs. 2 and 3 clearly illustrate, the above 
circumstance. As an example, we take I = i00 and a ratio of thermal conductivities ~t/%q = 
78, i.e., a ratio corresponding to steel and water. At the same time, we will henceforth use 
this value mainly without reference to any specific pair of liquid and channel material, taking 
it as a test value together with the other parameters 6o, k, and ~. 

7 
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II i 
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Fig. 2. Temperature in the channel: a) 
with 6o = 2, ~ = i, and k = 0.5 (i), 1 
(2), 2 (3), 3 (4), 6 (5), i0 (6); b) 
with 6o = 2, $ = 0.9, and k = 1 (i), 0.3 
(2), 3 (3), 5 (4), i0 (5), 0.i (6); 
curves 7 correspond to a Newtonian li- 
quid (6o § 0). 
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Fig. 3. Temperature in the channel: a) in an MPL with k = i, 6o = 2, 
and ~ = I (i), 0.6 (2), 0.4 (3), 0.2 (5), 0.i (6), i0-" (7); b) in water 
with k = 7, ~o = 14.5, ~ = 0,i (i), k = 7, 6o = 2.9, ~ = 0.5 (2), and 
k = 7, ~o = 1.45, ~ = i (3); curves 4 correspond to a Newtonian liquid 
(60 § 0). 

Figure 2a shows curves of the temperature field T=(@) for an MPL with the parameters 
6o = 2 and k = k/h = const with u = 0 flowing in channels of different dimensions h. Curve 7 
corresponds to Eq. (14), i.e., to a calculation not allowing for the internal microstructure 
of the liquid. Any curve in Fig. 2a corresponds to a physically permissible combination of 
parameters 6o, k, and ~, which cannot be said of the curves in Fig. 2b, where ~ < i. With a 
decrease in k and constant 6o and k, micropolarlty is manifest to a greater degree by the 
liquid, and themicrorotation of the particles in the liquid volume comprises a smaller and 
smaller part of ~. The value of ~ at the boundary should also account for a smaller part of 
~. On the other hand, a formally prescribed value of a may correspond to a value of ~ which 
exceeds the fraction of ~ that is physically permissible for the given ~o, k, and h. Thus, 
the character of the dependence of the curves of the temperature field T= on k with constant 
~, 6o, and k in Fig. 2b is the same up to values of k = i as in the case ~ = i: the values 
of T2 decrease with a decrease in k. They then change, since when k S i micropolarity is 
strongly manifest in the liquid and the microrotation in both theliquid volume and at the 
boundary should be less than [(i -- ~)/2]rot ~. Thus, curves 2 and 6 correspond to physically 
unreal situations, and the flow of the.givenMPL in channels with cross-sectional dimensions 
determined as h, = 0.3/k and h= = 0.1/k should correspond to boundary-condition parameters 
0<u<0.1. 

Figure 3 illustrates the dependence of the temperature field on the boundary-conditions 
parameter. It is apparent (Fig. 3a) that ~ ~ 0.4 when k = 1 and 6o = 2. Thus, the boundary- 
conditions parameters will differ in the flow of an MPL in channels with substantially dif- 
ferent cross-sectional dimensions. As a result, in Fig. 2, even in the case of physically 
permissible combinations of the parameters 6o, k, and ~, the representative curves can be re- 
garded as corresponding to the flow of an MPL in different channels only within a certain 
limited range of k, when u = const. 

It was shown in [2] that k = k/Ro~ e 7.107 m "I, 6 = 26o~/(2 + 6o~) = 0.84 for water flow- 
ing in a quartz microcapillary of radius Ro = 3"10 -7 m. 

Thus, for water flowing in such a microcapillary, 6o~ = 1.45 and k = 7. Figure 3b shows 
curves of T2(Y) for water flowing in a steel capillary with h = i0 -7 m and a wall thickness 
i0 -5 m. It should be noted that the smallness of the channel cross section (i0-7-i0 -6 m) at 
which the difference between T= and T2 n becomes substantial for water is due to the very small 
dimensions of its polymolecular structure formations, playing the role of "particles" of the 
MPL. These dimensions are obviously considerably larger for many other microstructural media 
(suspensions, liquid crystals, etc.). 

In the above examples we used the value 6o = 2. There are known to be [i] the following 
thermodynamic limitations on the material constants: < > 0, ~n > 0. Thus, the range 0 < ~o < 

is theoretically possible. For example, with I = i00 a--nd Xt/~ = 78, we find that T2n(~) 
T2(Y) by a factor of two in the case 6o = 4, k = i, and ~ = 0.9, and T2n(~) ~ T2(Y) by a 
factor of four in the case 60 = 20, k = i, and ~ = 0.9. 

The decrease in the calculated dissipative heating of the microstructural liquid com- 
pared to the value obtained within the framework of the Newtonian liquid model is explained 
as follows. By determining the viscous energy dissipation function of the microstructural 
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liquid and considering the latter to be Newtonian, we use overstated theoretical values of 
its flow velocity in microcapillaries. In actuality, the "equivalent" viscosity of such a 
liquid in microcapillaries is higher than handbook values of its shear viscosity [2]. As a 
result, despite the fact that ~mp is determined not only by the linear velocity but also by 
microrotation, their total contribution to ~ mp is less than ~n, which is determined only by 
the linear-velocity gradient -- since the theoretical values of the latter are higher than 
the actual values. 

Consequently, allowing for the natural rotations of particles of a micropolar liquid 
leads to a substantial (with corresponding values of the microstructural parameters k and 
~o, as well as ~) reduction in the theoretical values of its dissipative heating in the re- 
gion of stabilized heat exchange. 

NOTATION 

2h, distance between plates; dp/dx, pressure gradient; v x and 9z, components of the vel- 
ocity and microrotation vectors; ~, K, 8, and y, material constants of the micropolar liquid; 
e, boundary-condition parameter; ~, dissipative function; tkZ , stress tensor; mkZ , micro- 
moments tensor; A t and %q, thermal conductivities of the materials of the channel and liquid; 
T, temperature; H, and H2, thicknesses of channel walls; Tc, temperature of outside surfaces 
of channel; erkZ, antisymmetric tensor; ~ = (1/2) rot ~, vorticity vector. 
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THERMAL INTERACTION BETWEEN A PIPELINE AND THE SURROUNDING FROZEN GROUND 

I. Ya. Brekhman and B. A. Krasovitskii UDC 532.542:624.139 

A method is proposed for computing heat-transfer processes of pipelines and other 
engineering structures with finely dispersed frozen ground. 

The exploitation of pipelines under low-temperature conditions of the surrounding ground 
is fraught with numerous complications. Reduction of the temperature of the product being 
transported can result in elevation of its viscosity (for oil), formation of ice (for water), 
and hydrated locks (for gases). Warming up the surrounding ground results in disturbance of 
its stability and, as aresult, in pipeline buckling and undesirable ecological consequences. 
The most unfavorable are the pipeline exploitation conditions during its startup, when therm- 
al losses are especially large. This same period is most complex from the viewpoint of the 
methodology of thermal design since nonstationary effects must be taken into account. These 
complexities grow significantly when the pipeline is in finely dispersed soils in which the 
phase transitions extend into the temperature spectrum. 

Features of the thermal interaction between a pipeline and finely dispersed frozen soil 
are analyzed in this paper. 
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